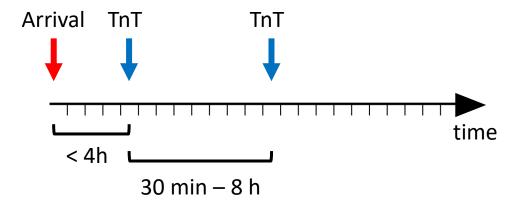


Ulf Ekelund Professor Senior Consultant


AIM

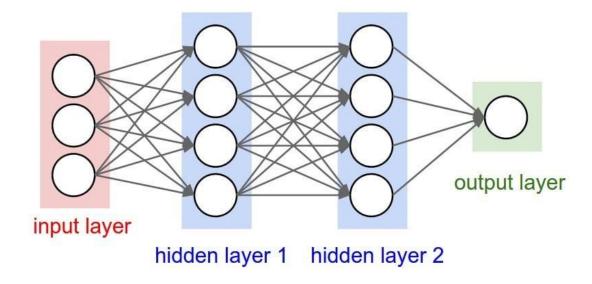
To assess the ability of ML models to rule in or out AMI compared to the ESC algorithms

Methods

5695 patients with two TnT tests from Lund + Helsingborg EDs during 2010-14

Randomization

70% ► Training (derivation) set


30% ► Testing (validation) set

ANN and LogReg models

Input

- Age
- Sex
- Two TnT results and
- Rate of change

Output – AMI probability

Comparison with ESC algorithms in patients with the required timing (0/1h or 0/3h) of TnT samples.

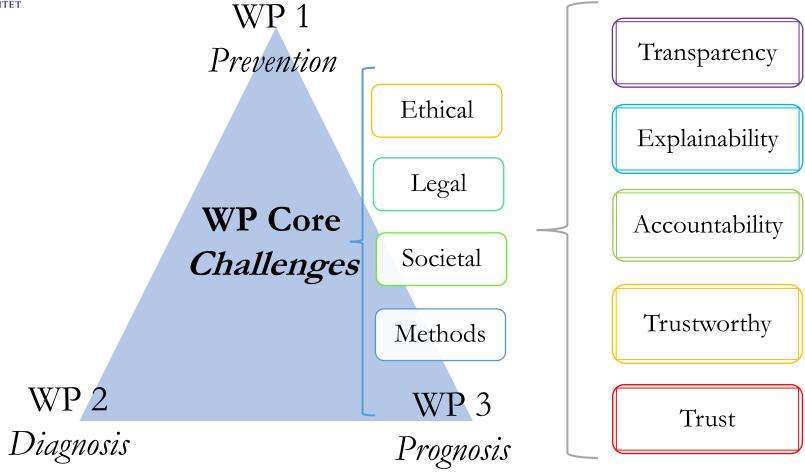
Results, test set

73% met timing criteria for one of the ESC algorithms

	Low risk Rule out Send home	Intermediate risk	High risk Rule in Admit	Sum
ESC	55.2%	24.5%	20.3%	100%
algorithms	(98.8% NPV)		(59.9% PPV)	
ANN	59.2%	20.2%	20.6%	100%
	(98.9% NPV)		(60.4% PPV	
LogReg	57.1	22.5%	20.4%	100%
	(98.9% NPV)		(60.0% PPV)	

Conclusion

ANN and LogReg can improve risk assessment in ED chest pain patients


- Safe rule out ↑, intermediate risk group↓
- Numeric estimate of AMI risk
- No timing between TnT tests required

What now?

Additional input features, eg from ECG, vital signs, previous medical history, socioeconomic factors aso.

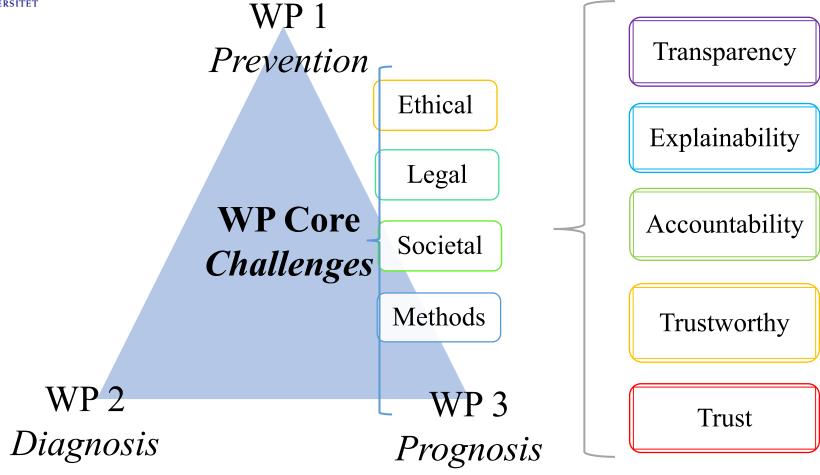
Project: Literature Review

- Stefan Larsson,
 associate professor,
 Technology and Society
 (Lund)
- Charlotte Högberg,
 Doctoral student,
 Technology and Society
 (Lund)
- Laetitia Tanqueray,
 Project Assistant at
 Technology and Society
 (Lund)

Transparency

- "Black box", poor explainability (xAI)
- Proprietorship
- Market complexity
- Distributed, personalised outcomes
- Algorithmic literacy, layman competence
- Lingual translation, terminologies
- Avoiding abuse
- Larsson, S., & Heintz, F. (2020). Transparency in artificial intelligence. *Internet Policy Review*, 9(2).
- Larsson, S. (2019). The socio-legal relevance of artificial intelligence. *Droit et société*, (3), 573-593.

Systematic Literature Review


(AI or "artificial intelligence" or "machine learning" or "deep learning" or "reinforcement learning" or "natural language processing" or "augmented intelligence" or "neural networks" or GAN or robotic*)

AND (medic* **or** health* **NOT** healthy)

AND (fairness or equality or accountab* or trust*
or governance or xAI or explainab* or
transparent* or "black box" or "human-centric"
or "human-in-the-loop" or privacy)

Web of Science, equaling to 3,000 hits

Project: Literature Review

- Stefan Larsson, associate professor, Technology and Society (Lund)
- Charlotte Högberg,
 Doctoral student,
 Technology and Society
 (Lund)
- Laetitia Tanqueray,
 Project Assistant at
 Technology and Society
 (Lund)

Transparency

- "Black box", poor explainability (xAI)
- Proprietorship
- Market complexity
- Distributed, personalised outcomes
- Algorithmic literacy, layman competence
- Lingual translation, terminologies
- Avoiding abuse
- Larsson, S., & Heintz, F. (2020). Transparency in artificial intelligence. *Internet Policy Review*, 9(2).
- Larsson, S. (2019). The socio-legal relevance of artificial intelligence. *Droit et société*, (3), 573-593.

Systematic Literature Review

(AI or "artificial intelligence" or "machine learning" or "deep learning" or "reinforcement learning" or "natural language processing" or "augmented intelligence" or "neural networks" or GAN or robotic*)

AND (medic* **or** health* **NOT** healthy)

AND (fairness or equality or accountab* or trust*
or governance or xAl or explainab* or
transparent* or "black box" or "human-centric"
or "human-in-the-loop" or privacy)

Web of Science, equaling to 3,000 hits